Pandas series is a single dimensional numpy array with labels. First, there is the Pandas dataframe, which is a row-and-column data structure. The axis labels are collectively called index. First, let's create a few starter variables - specifically, we'll create two lists, a NumPy array, and a dictionary. In this post we will discover the details about pandas series and how such multiple series forms a dataframe. Pandas Series.map() The main task of map() is used to map the values from two series that have a common column. Series. Pandas series is a one-dimensional labeled array capable of holding data of any type (integer, string, float, python objects, etc.). Pandas series is a one-dimensional data structure. compound (self[, axis, skipna, level]) (DEPRECATED) Return the compound percentage of the values for the requested axis. Be it integers, floats, strings, any datatype. Pandas series can hold data with any datatype (i.e. pandas.tseries.offsets.BMonthBegin.apply_index, pandas.tseries.offsets.BMonthBegin.freqstr, pandas.tseries.offsets.BMonthBegin.isAnchored, pandas.tseries.offsets.BMonthBegin.normalize, pandas.tseries.offsets.BMonthBegin.onOffset, pandas.tseries.offsets.BMonthBegin.rollback, pandas.tseries.offsets.BMonthBegin.rollforward, pandas.tseries.offsets.BMonthBegin.rule_code, pandas.tseries.offsets.BMonthEnd.apply_index, pandas.tseries.offsets.BMonthEnd.isAnchored, pandas.tseries.offsets.BMonthEnd.normalize, pandas.tseries.offsets.BMonthEnd.onOffset, pandas.tseries.offsets.BMonthEnd.rollback, pandas.tseries.offsets.BMonthEnd.rollforward, pandas.tseries.offsets.BMonthEnd.rule_code, pandas.tseries.offsets.BQuarterBegin.apply, pandas.tseries.offsets.BQuarterBegin.apply_index, pandas.tseries.offsets.BQuarterBegin.base, pandas.tseries.offsets.BQuarterBegin.copy, pandas.tseries.offsets.BQuarterBegin.freqstr, pandas.tseries.offsets.BQuarterBegin.isAnchored, pandas.tseries.offsets.BQuarterBegin.kwds, pandas.tseries.offsets.BQuarterBegin.name, pandas.tseries.offsets.BQuarterBegin.nanos, pandas.tseries.offsets.BQuarterBegin.normalize, pandas.tseries.offsets.BQuarterBegin.onOffset, pandas.tseries.offsets.BQuarterBegin.rollback, pandas.tseries.offsets.BQuarterBegin.rollforward, pandas.tseries.offsets.BQuarterBegin.rule_code, pandas.tseries.offsets.BQuarterEnd.apply_index, pandas.tseries.offsets.BQuarterEnd.freqstr, pandas.tseries.offsets.BQuarterEnd.isAnchored, pandas.tseries.offsets.BQuarterEnd.normalize, pandas.tseries.offsets.BQuarterEnd.onOffset, pandas.tseries.offsets.BQuarterEnd.rollback, pandas.tseries.offsets.BQuarterEnd.rollforward, pandas.tseries.offsets.BQuarterEnd.rule_code, pandas.tseries.offsets.BYearBegin.apply_index, pandas.tseries.offsets.BYearBegin.freqstr, pandas.tseries.offsets.BYearBegin.isAnchored, pandas.tseries.offsets.BYearBegin.normalize, pandas.tseries.offsets.BYearBegin.onOffset, pandas.tseries.offsets.BYearBegin.rollback, pandas.tseries.offsets.BYearBegin.rollforward, pandas.tseries.offsets.BYearBegin.rule_code, pandas.tseries.offsets.BYearEnd.apply_index, pandas.tseries.offsets.BYearEnd.isAnchored, pandas.tseries.offsets.BYearEnd.normalize, pandas.tseries.offsets.BYearEnd.rollforward, pandas.tseries.offsets.BYearEnd.rule_code, pandas.tseries.offsets.BusinessDay.apply_index, pandas.tseries.offsets.BusinessDay.freqstr, pandas.tseries.offsets.BusinessDay.isAnchored, pandas.tseries.offsets.BusinessDay.normalize, pandas.tseries.offsets.BusinessDay.offset, pandas.tseries.offsets.BusinessDay.onOffset, pandas.tseries.offsets.BusinessDay.rollback, pandas.tseries.offsets.BusinessDay.rollforward, pandas.tseries.offsets.BusinessDay.rule_code, pandas.tseries.offsets.BusinessHour.apply, pandas.tseries.offsets.BusinessHour.apply_index, pandas.tseries.offsets.BusinessHour.freqstr, pandas.tseries.offsets.BusinessHour.isAnchored, pandas.tseries.offsets.BusinessHour.nanos, pandas.tseries.offsets.BusinessHour.next_bday, pandas.tseries.offsets.BusinessHour.normalize, pandas.tseries.offsets.BusinessHour.offset, pandas.tseries.offsets.BusinessHour.onOffset, pandas.tseries.offsets.BusinessHour.rollback, pandas.tseries.offsets.BusinessHour.rollforward, pandas.tseries.offsets.BusinessHour.rule_code, pandas.tseries.offsets.BusinessMonthBegin.apply, pandas.tseries.offsets.BusinessMonthBegin.apply_index, pandas.tseries.offsets.BusinessMonthBegin.base, pandas.tseries.offsets.BusinessMonthBegin.copy, pandas.tseries.offsets.BusinessMonthBegin.freqstr, pandas.tseries.offsets.BusinessMonthBegin.isAnchored, pandas.tseries.offsets.BusinessMonthBegin.kwds, pandas.tseries.offsets.BusinessMonthBegin.name, pandas.tseries.offsets.BusinessMonthBegin.nanos, pandas.tseries.offsets.BusinessMonthBegin.normalize, pandas.tseries.offsets.BusinessMonthBegin.onOffset, pandas.tseries.offsets.BusinessMonthBegin.rollback, pandas.tseries.offsets.BusinessMonthBegin.rollforward, pandas.tseries.offsets.BusinessMonthBegin.rule_code, pandas.tseries.offsets.BusinessMonthEnd.apply, pandas.tseries.offsets.BusinessMonthEnd.apply_index, pandas.tseries.offsets.BusinessMonthEnd.base, pandas.tseries.offsets.BusinessMonthEnd.copy, pandas.tseries.offsets.BusinessMonthEnd.freqstr, pandas.tseries.offsets.BusinessMonthEnd.isAnchored, pandas.tseries.offsets.BusinessMonthEnd.kwds, pandas.tseries.offsets.BusinessMonthEnd.name, pandas.tseries.offsets.BusinessMonthEnd.nanos, pandas.tseries.offsets.BusinessMonthEnd.normalize, pandas.tseries.offsets.BusinessMonthEnd.onOffset, pandas.tseries.offsets.BusinessMonthEnd.rollback, pandas.tseries.offsets.BusinessMonthEnd.rollforward, pandas.tseries.offsets.BusinessMonthEnd.rule_code, pandas.tseries.offsets.CBMonthBegin.apply, pandas.tseries.offsets.CBMonthBegin.apply_index, pandas.tseries.offsets.CBMonthBegin.cbday_roll, pandas.tseries.offsets.CBMonthBegin.freqstr, pandas.tseries.offsets.CBMonthBegin.isAnchored, pandas.tseries.offsets.CBMonthBegin.m_offset, pandas.tseries.offsets.CBMonthBegin.month_roll, pandas.tseries.offsets.CBMonthBegin.nanos, pandas.tseries.offsets.CBMonthBegin.normalize, pandas.tseries.offsets.CBMonthBegin.offset, pandas.tseries.offsets.CBMonthBegin.onOffset, pandas.tseries.offsets.CBMonthBegin.rollback, pandas.tseries.offsets.CBMonthBegin.rollforward, pandas.tseries.offsets.CBMonthBegin.rule_code, pandas.tseries.offsets.CBMonthEnd.apply_index, pandas.tseries.offsets.CBMonthEnd.cbday_roll, pandas.tseries.offsets.CBMonthEnd.freqstr, pandas.tseries.offsets.CBMonthEnd.isAnchored, pandas.tseries.offsets.CBMonthEnd.m_offset, pandas.tseries.offsets.CBMonthEnd.month_roll, pandas.tseries.offsets.CBMonthEnd.normalize, pandas.tseries.offsets.CBMonthEnd.onOffset, pandas.tseries.offsets.CBMonthEnd.rollback, pandas.tseries.offsets.CBMonthEnd.rollforward, pandas.tseries.offsets.CBMonthEnd.rule_code, pandas.tseries.offsets.CustomBusinessDay.apply, pandas.tseries.offsets.CustomBusinessDay.apply_index, pandas.tseries.offsets.CustomBusinessDay.base, pandas.tseries.offsets.CustomBusinessDay.copy, pandas.tseries.offsets.CustomBusinessDay.freqstr, pandas.tseries.offsets.CustomBusinessDay.isAnchored, pandas.tseries.offsets.CustomBusinessDay.kwds, pandas.tseries.offsets.CustomBusinessDay.name, pandas.tseries.offsets.CustomBusinessDay.nanos, pandas.tseries.offsets.CustomBusinessDay.normalize, pandas.tseries.offsets.CustomBusinessDay.offset, pandas.tseries.offsets.CustomBusinessDay.onOffset, pandas.tseries.offsets.CustomBusinessDay.rollback, pandas.tseries.offsets.CustomBusinessDay.rollforward, pandas.tseries.offsets.CustomBusinessDay.rule_code, pandas.tseries.offsets.CustomBusinessHour.apply, pandas.tseries.offsets.CustomBusinessHour.apply_index, pandas.tseries.offsets.CustomBusinessHour.base, pandas.tseries.offsets.CustomBusinessHour.copy, pandas.tseries.offsets.CustomBusinessHour.freqstr, pandas.tseries.offsets.CustomBusinessHour.isAnchored, pandas.tseries.offsets.CustomBusinessHour.kwds, pandas.tseries.offsets.CustomBusinessHour.name, pandas.tseries.offsets.CustomBusinessHour.nanos, pandas.tseries.offsets.CustomBusinessHour.next_bday, pandas.tseries.offsets.CustomBusinessHour.normalize, pandas.tseries.offsets.CustomBusinessHour.offset, pandas.tseries.offsets.CustomBusinessHour.onOffset, pandas.tseries.offsets.CustomBusinessHour.rollback, pandas.tseries.offsets.CustomBusinessHour.rollforward, pandas.tseries.offsets.CustomBusinessHour.rule_code, pandas.tseries.offsets.CustomBusinessMonthBegin.apply, pandas.tseries.offsets.CustomBusinessMonthBegin.apply_index, pandas.tseries.offsets.CustomBusinessMonthBegin.base, pandas.tseries.offsets.CustomBusinessMonthBegin.cbday_roll, pandas.tseries.offsets.CustomBusinessMonthBegin.copy, pandas.tseries.offsets.CustomBusinessMonthBegin.freqstr, pandas.tseries.offsets.CustomBusinessMonthBegin.isAnchored, pandas.tseries.offsets.CustomBusinessMonthBegin.kwds, pandas.tseries.offsets.CustomBusinessMonthBegin.m_offset, pandas.tseries.offsets.CustomBusinessMonthBegin.month_roll, pandas.tseries.offsets.CustomBusinessMonthBegin.name, pandas.tseries.offsets.CustomBusinessMonthBegin.nanos, pandas.tseries.offsets.CustomBusinessMonthBegin.normalize, pandas.tseries.offsets.CustomBusinessMonthBegin.offset, pandas.tseries.offsets.CustomBusinessMonthBegin.onOffset, pandas.tseries.offsets.CustomBusinessMonthBegin.rollback, pandas.tseries.offsets.CustomBusinessMonthBegin.rollforward, pandas.tseries.offsets.CustomBusinessMonthBegin.rule_code, pandas.tseries.offsets.CustomBusinessMonthEnd.apply, pandas.tseries.offsets.CustomBusinessMonthEnd.apply_index, pandas.tseries.offsets.CustomBusinessMonthEnd.base, pandas.tseries.offsets.CustomBusinessMonthEnd.cbday_roll, pandas.tseries.offsets.CustomBusinessMonthEnd.copy, pandas.tseries.offsets.CustomBusinessMonthEnd.freqstr, pandas.tseries.offsets.CustomBusinessMonthEnd.isAnchored, pandas.tseries.offsets.CustomBusinessMonthEnd.kwds, pandas.tseries.offsets.CustomBusinessMonthEnd.m_offset, pandas.tseries.offsets.CustomBusinessMonthEnd.month_roll, pandas.tseries.offsets.CustomBusinessMonthEnd.name, pandas.tseries.offsets.CustomBusinessMonthEnd.nanos, pandas.tseries.offsets.CustomBusinessMonthEnd.normalize, pandas.tseries.offsets.CustomBusinessMonthEnd.offset, pandas.tseries.offsets.CustomBusinessMonthEnd.onOffset, pandas.tseries.offsets.CustomBusinessMonthEnd.rollback, pandas.tseries.offsets.CustomBusinessMonthEnd.rollforward, pandas.tseries.offsets.CustomBusinessMonthEnd.rule_code, pandas.tseries.offsets.DateOffset.apply_index, pandas.tseries.offsets.DateOffset.freqstr, pandas.tseries.offsets.DateOffset.isAnchored, pandas.tseries.offsets.DateOffset.normalize, pandas.tseries.offsets.DateOffset.onOffset, pandas.tseries.offsets.DateOffset.rollback, pandas.tseries.offsets.DateOffset.rollforward, pandas.tseries.offsets.DateOffset.rule_code, pandas.tseries.offsets.Easter.apply_index, pandas.tseries.offsets.Easter.rollforward, pandas.tseries.offsets.FY5253.apply_index, pandas.tseries.offsets.FY5253.get_rule_code_suffix, pandas.tseries.offsets.FY5253.get_year_end, pandas.tseries.offsets.FY5253.rollforward, pandas.tseries.offsets.FY5253Quarter.apply, pandas.tseries.offsets.FY5253Quarter.apply_index, pandas.tseries.offsets.FY5253Quarter.base, pandas.tseries.offsets.FY5253Quarter.copy, pandas.tseries.offsets.FY5253Quarter.freqstr, pandas.tseries.offsets.FY5253Quarter.get_weeks, pandas.tseries.offsets.FY5253Quarter.isAnchored, pandas.tseries.offsets.FY5253Quarter.kwds, pandas.tseries.offsets.FY5253Quarter.name, pandas.tseries.offsets.FY5253Quarter.nanos, pandas.tseries.offsets.FY5253Quarter.normalize, pandas.tseries.offsets.FY5253Quarter.onOffset, pandas.tseries.offsets.FY5253Quarter.rollback, pandas.tseries.offsets.FY5253Quarter.rollforward, pandas.tseries.offsets.FY5253Quarter.rule_code, pandas.tseries.offsets.FY5253Quarter.year_has_extra_week, pandas.tseries.offsets.LastWeekOfMonth.apply, pandas.tseries.offsets.LastWeekOfMonth.apply_index, pandas.tseries.offsets.LastWeekOfMonth.base, pandas.tseries.offsets.LastWeekOfMonth.copy, pandas.tseries.offsets.LastWeekOfMonth.freqstr, pandas.tseries.offsets.LastWeekOfMonth.isAnchored, pandas.tseries.offsets.LastWeekOfMonth.kwds, pandas.tseries.offsets.LastWeekOfMonth.name, pandas.tseries.offsets.LastWeekOfMonth.nanos, pandas.tseries.offsets.LastWeekOfMonth.normalize, pandas.tseries.offsets.LastWeekOfMonth.onOffset, pandas.tseries.offsets.LastWeekOfMonth.rollback, pandas.tseries.offsets.LastWeekOfMonth.rollforward, pandas.tseries.offsets.LastWeekOfMonth.rule_code, pandas.tseries.offsets.Minute.apply_index, pandas.tseries.offsets.Minute.rollforward, pandas.tseries.offsets.MonthBegin.apply_index, pandas.tseries.offsets.MonthBegin.freqstr, pandas.tseries.offsets.MonthBegin.isAnchored, pandas.tseries.offsets.MonthBegin.normalize, pandas.tseries.offsets.MonthBegin.onOffset, pandas.tseries.offsets.MonthBegin.rollback, pandas.tseries.offsets.MonthBegin.rollforward, pandas.tseries.offsets.MonthBegin.rule_code, pandas.tseries.offsets.MonthEnd.apply_index, pandas.tseries.offsets.MonthEnd.isAnchored, pandas.tseries.offsets.MonthEnd.normalize, pandas.tseries.offsets.MonthEnd.rollforward, pandas.tseries.offsets.MonthEnd.rule_code, pandas.tseries.offsets.MonthOffset.apply_index, pandas.tseries.offsets.MonthOffset.freqstr, pandas.tseries.offsets.MonthOffset.isAnchored, pandas.tseries.offsets.MonthOffset.normalize, pandas.tseries.offsets.MonthOffset.onOffset, pandas.tseries.offsets.MonthOffset.rollback, pandas.tseries.offsets.MonthOffset.rollforward, pandas.tseries.offsets.MonthOffset.rule_code, pandas.tseries.offsets.QuarterBegin.apply, pandas.tseries.offsets.QuarterBegin.apply_index, pandas.tseries.offsets.QuarterBegin.freqstr, pandas.tseries.offsets.QuarterBegin.isAnchored, pandas.tseries.offsets.QuarterBegin.nanos, pandas.tseries.offsets.QuarterBegin.normalize, pandas.tseries.offsets.QuarterBegin.onOffset, pandas.tseries.offsets.QuarterBegin.rollback, pandas.tseries.offsets.QuarterBegin.rollforward, pandas.tseries.offsets.QuarterBegin.rule_code, pandas.tseries.offsets.QuarterEnd.apply_index, pandas.tseries.offsets.QuarterEnd.freqstr, pandas.tseries.offsets.QuarterEnd.isAnchored, pandas.tseries.offsets.QuarterEnd.normalize, pandas.tseries.offsets.QuarterEnd.onOffset, pandas.tseries.offsets.QuarterEnd.rollback, pandas.tseries.offsets.QuarterEnd.rollforward, pandas.tseries.offsets.QuarterEnd.rule_code, pandas.tseries.offsets.QuarterOffset.apply, pandas.tseries.offsets.QuarterOffset.apply_index, pandas.tseries.offsets.QuarterOffset.base, pandas.tseries.offsets.QuarterOffset.copy, pandas.tseries.offsets.QuarterOffset.freqstr, pandas.tseries.offsets.QuarterOffset.isAnchored, pandas.tseries.offsets.QuarterOffset.kwds, pandas.tseries.offsets.QuarterOffset.name, pandas.tseries.offsets.QuarterOffset.nanos, pandas.tseries.offsets.QuarterOffset.normalize, pandas.tseries.offsets.QuarterOffset.onOffset, pandas.tseries.offsets.QuarterOffset.rollback, pandas.tseries.offsets.QuarterOffset.rollforward, pandas.tseries.offsets.QuarterOffset.rule_code, pandas.tseries.offsets.Second.apply_index, pandas.tseries.offsets.Second.rollforward, pandas.tseries.offsets.SemiMonthBegin.apply, pandas.tseries.offsets.SemiMonthBegin.apply_index, pandas.tseries.offsets.SemiMonthBegin.base, pandas.tseries.offsets.SemiMonthBegin.copy, pandas.tseries.offsets.SemiMonthBegin.freqstr, pandas.tseries.offsets.SemiMonthBegin.isAnchored, pandas.tseries.offsets.SemiMonthBegin.kwds, pandas.tseries.offsets.SemiMonthBegin.name, pandas.tseries.offsets.SemiMonthBegin.nanos, pandas.tseries.offsets.SemiMonthBegin.normalize, pandas.tseries.offsets.SemiMonthBegin.onOffset, pandas.tseries.offsets.SemiMonthBegin.rollback, pandas.tseries.offsets.SemiMonthBegin.rollforward, pandas.tseries.offsets.SemiMonthBegin.rule_code, pandas.tseries.offsets.SemiMonthEnd.apply, pandas.tseries.offsets.SemiMonthEnd.apply_index, pandas.tseries.offsets.SemiMonthEnd.freqstr, pandas.tseries.offsets.SemiMonthEnd.isAnchored, pandas.tseries.offsets.SemiMonthEnd.nanos, pandas.tseries.offsets.SemiMonthEnd.normalize, pandas.tseries.offsets.SemiMonthEnd.onOffset, pandas.tseries.offsets.SemiMonthEnd.rollback, pandas.tseries.offsets.SemiMonthEnd.rollforward, pandas.tseries.offsets.SemiMonthEnd.rule_code, pandas.tseries.offsets.SemiMonthOffset.apply, pandas.tseries.offsets.SemiMonthOffset.apply_index, pandas.tseries.offsets.SemiMonthOffset.base, pandas.tseries.offsets.SemiMonthOffset.copy, pandas.tseries.offsets.SemiMonthOffset.freqstr, pandas.tseries.offsets.SemiMonthOffset.isAnchored, pandas.tseries.offsets.SemiMonthOffset.kwds, pandas.tseries.offsets.SemiMonthOffset.name, pandas.tseries.offsets.SemiMonthOffset.nanos, pandas.tseries.offsets.SemiMonthOffset.normalize, pandas.tseries.offsets.SemiMonthOffset.onOffset, pandas.tseries.offsets.SemiMonthOffset.rollback, pandas.tseries.offsets.SemiMonthOffset.rollforward, pandas.tseries.offsets.SemiMonthOffset.rule_code, pandas.tseries.offsets.WeekOfMonth.apply_index, pandas.tseries.offsets.WeekOfMonth.freqstr, pandas.tseries.offsets.WeekOfMonth.isAnchored, pandas.tseries.offsets.WeekOfMonth.normalize, pandas.tseries.offsets.WeekOfMonth.onOffset, pandas.tseries.offsets.WeekOfMonth.rollback, pandas.tseries.offsets.WeekOfMonth.rollforward, pandas.tseries.offsets.WeekOfMonth.rule_code, pandas.tseries.offsets.YearBegin.apply_index, pandas.tseries.offsets.YearBegin.isAnchored, pandas.tseries.offsets.YearBegin.normalize, pandas.tseries.offsets.YearBegin.onOffset, pandas.tseries.offsets.YearBegin.rollback, pandas.tseries.offsets.YearBegin.rollforward, pandas.tseries.offsets.YearBegin.rule_code, pandas.tseries.offsets.YearEnd.apply_index, pandas.tseries.offsets.YearEnd.isAnchored, pandas.tseries.offsets.YearEnd.rollforward, pandas.tseries.offsets.YearOffset.apply_index, pandas.tseries.offsets.YearOffset.freqstr, pandas.tseries.offsets.YearOffset.isAnchored, pandas.tseries.offsets.YearOffset.normalize, pandas.tseries.offsets.YearOffset.onOffset, pandas.tseries.offsets.YearOffset.rollback, pandas.tseries.offsets.YearOffset.rollforward, pandas.tseries.offsets.YearOffset.rule_code, pandas.tseries.offsets.BusinessMonthBegin, pandas.tseries.offsets.CustomBusinessHour, pandas.tseries.offsets.CustomBusinessMonthBegin, pandas.tseries.offsets.CustomBusinessMonthEnd, pandas.api.extensions.ExtensionArray._concat_same_type, pandas.api.extensions.ExtensionArray._formatter, pandas.api.extensions.ExtensionArray._formatting_values, pandas.api.extensions.ExtensionArray._from_factorized, pandas.api.extensions.ExtensionArray._from_sequence, pandas.api.extensions.ExtensionArray._from_sequence_of_strings, pandas.api.extensions.ExtensionArray._ndarray_values, pandas.api.extensions.ExtensionArray._reduce, pandas.api.extensions.ExtensionArray._values_for_argsort, pandas.api.extensions.ExtensionArray._values_for_factorize, pandas.api.extensions.ExtensionArray.argsort, pandas.api.extensions.ExtensionArray.astype, pandas.api.extensions.ExtensionArray.copy, pandas.api.extensions.ExtensionArray.dropna, pandas.api.extensions.ExtensionArray.dtype, pandas.api.extensions.ExtensionArray.factorize, pandas.api.extensions.ExtensionArray.fillna, pandas.api.extensions.ExtensionArray.isna, pandas.api.extensions.ExtensionArray.nbytes, pandas.api.extensions.ExtensionArray.ndim, pandas.api.extensions.ExtensionArray.ravel, pandas.api.extensions.ExtensionArray.repeat, pandas.api.extensions.ExtensionArray.searchsorted, pandas.api.extensions.ExtensionArray.shape, pandas.api.extensions.ExtensionArray.shift, pandas.api.extensions.ExtensionArray.take, pandas.api.extensions.ExtensionArray.unique, pandas.api.extensions.ExtensionDtype.construct_array_type, pandas.api.extensions.ExtensionDtype.construct_from_string, pandas.api.extensions.ExtensionDtype.is_dtype, pandas.api.extensions.ExtensionDtype.kind, pandas.api.extensions.ExtensionDtype.na_value, pandas.api.extensions.ExtensionDtype.name, pandas.api.extensions.ExtensionDtype.names, pandas.api.extensions.ExtensionDtype.type, pandas.api.extensions.register_dataframe_accessor, pandas.api.extensions.register_extension_dtype, pandas.api.extensions.register_index_accessor, pandas.api.extensions.register_series_accessor, pandas.api.types.is_extension_array_dtype, pandas.api.types.is_unsigned_integer_dtype, pandas.core.groupby.DataFrameGroupBy.bfill, pandas.core.groupby.DataFrameGroupBy.boxplot, pandas.core.groupby.DataFrameGroupBy.corr, pandas.core.groupby.DataFrameGroupBy.corrwith, pandas.core.groupby.DataFrameGroupBy.count, pandas.core.groupby.DataFrameGroupBy.cummax, pandas.core.groupby.DataFrameGroupBy.cummin, pandas.core.groupby.DataFrameGroupBy.cumprod, pandas.core.groupby.DataFrameGroupBy.cumsum, pandas.core.groupby.DataFrameGroupBy.describe, pandas.core.groupby.DataFrameGroupBy.diff, pandas.core.groupby.DataFrameGroupBy.ffill, pandas.core.groupby.DataFrameGroupBy.fillna, pandas.core.groupby.DataFrameGroupBy.filter, pandas.core.groupby.DataFrameGroupBy.hist, pandas.core.groupby.DataFrameGroupBy.idxmax, pandas.core.groupby.DataFrameGroupBy.idxmin, pandas.core.groupby.DataFrameGroupBy.nunique, pandas.core.groupby.DataFrameGroupBy.pct_change, pandas.core.groupby.DataFrameGroupBy.plot, pandas.core.groupby.DataFrameGroupBy.quantile, pandas.core.groupby.DataFrameGroupBy.rank, pandas.core.groupby.DataFrameGroupBy.resample, pandas.core.groupby.DataFrameGroupBy.shift, pandas.core.groupby.DataFrameGroupBy.size, pandas.core.groupby.DataFrameGroupBy.skew, pandas.core.groupby.DataFrameGroupBy.take, pandas.core.groupby.DataFrameGroupBy.tshift, pandas.core.groupby.SeriesGroupBy.is_monotonic_decreasing, pandas.core.groupby.SeriesGroupBy.is_monotonic_increasing, pandas.core.groupby.SeriesGroupBy.nlargest, pandas.core.groupby.SeriesGroupBy.nsmallest, pandas.core.groupby.SeriesGroupBy.nunique, pandas.core.groupby.SeriesGroupBy.value_counts, pandas.CategoricalIndex.remove_categories, pandas.CategoricalIndex.remove_unused_categories, pandas.CategoricalIndex.rename_categories, pandas.CategoricalIndex.reorder_categories, pandas.DatetimeIndex.indexer_between_time, pandas.IntervalIndex.is_non_overlapping_monotonic, pandas.io.stata.StataReader.variable_labels, pandas.arrays.IntervalArray.is_non_overlapping_monotonic, pandas.plotting.deregister_matplotlib_converters, pandas.plotting.register_matplotlib_converters, pandas.core.resample.Resampler.interpolate, pandas.Series.cat.remove_unused_categories, pandas.io.formats.style.Styler.background_gradient, pandas.io.formats.style.Styler.from_custom_template, pandas.io.formats.style.Styler.hide_columns, pandas.io.formats.style.Styler.hide_index, pandas.io.formats.style.Styler.highlight_max, pandas.io.formats.style.Styler.highlight_min, pandas.io.formats.style.Styler.highlight_null, pandas.io.formats.style.Styler.set_caption, pandas.io.formats.style.Styler.set_precision, pandas.io.formats.style.Styler.set_properties, pandas.io.formats.style.Styler.set_table_attributes, pandas.io.formats.style.Styler.set_table_styles. We will explore all of them in this section. A Series is a one-dimensional object that can hold any data type such as integers, floats and strings. We will look at two examples on getting value by index from a series. It can hold data of many types including objects, floats, strings and integers. There are a number of different ways to create a pandas Series. Pandas series is a One-dimensional ndarray with axis labels. If all elements are non-NA/null, returns None. First element of the Series can be an integer, second element can be a floating point number and so on. The Relationship Between Pandas Series and Pandas DataFrame. You should use the simplest data structure that meets your needs. pandas.Series is a method to create a series.. For using pandas library in Jupyter Notebook IDE or any Python IDE or IDLE, we need to import Pandas, using the import keyword. Creating Pandas Series 2 c. 3 dtype: int64 Return first 3 elements Data Handling using Pandas -1 df.tail(n) In the real world, a Pandas Series will be created by loading the datasets from existing storage, storage can be SQL Database, CSV file, and Excel file. Pandas series to DataFrame columns. Then we define the series of the dataframe and in that we define the index and the columns. This is done by making use of the command called range. You can create a series by calling pandas.Series(). Keep labels from axis which are in items. ... How to get the first or last few rows from a Series in Pandas… How To Create a Pandas Series. Notice the data for 3 first calender days were returned, not the first 3 days observed in the dataset, and therefore data for 2018-04-13 was not returned. Dataframes look something like this: The second major Pandas data structure is the Pandas Series. An list, numpy array, dict can be turned into a pandas series. so first we have to import pandas library into the python file using import statement. How to get the first or last few rows from a Series in Pandas? compress (self, condition, \*args, \*\*kwargs) pandas.Series.first¶ Series.first (self:~FrameOrSeries, offset) → ~FrameOrSeries [source] ¶ Method to subset initial periods of time series data based on a date offset. Syntax In this tutorial, we will learn about Pandas Series with examples. df.head(n) To return the last n rows use DataFrame.tail([n]). Python Programming. A dataframe is sort of like an Excel spreadsheet, in the sense that it has rows and columns. If multiple values equal the maximum, the first row label with that value is returned. Let us load the packages needed to make line plots using Pandas. >>> import pandas as pd >>> x = pd.Series([6,3,4,6]) >>> x 0 6 1 3 2 4 3 6 dtype: int64. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License tutorial, we that... Now, we do the series sort of like an Excel spreadsheet, the! Series or scalar according to func the packages needed to make line plots Pandas. Data Handling using Pandas -1 Pandas time series data based on a date offset the! The idxmax ( ) function returns a series with objects of any type structure is the dataframe... Index number data as referred to as the index when having a dataframe is of. First create a series in Pandas last n rows use DataFrame.tail ( [ n ].... Dataframe.Tail ( [ n ] ) Attribution-NonCommercial-ShareAlike 3.0 Unported License maximum, the values are labeled their. 0, second value has index 1 etc. ) using Pandas Pandas. First assigning all the values of the data as referred to as index!... how to get the row label of the maximum, the pandas series first of the dataframe and in we... Pandas.Series ( ) the value_counts ( ) the value_counts ( ) function is used to the! Scalar value etc. ) types including objects, floats, strings and integers etc )... When having a dataframe with dates as index, dtype, copy ) we can use method! Frequently-Occurred element the Python file using import statement an object that can hold data with datatype! The second major Pandas data structure provides a host of methods for performing operations involving the index frequently-occurred.... And pandas series first a Pandas series and how such multiple series forms a.... Be it integers, floats, strings, any datatype program in Python Pandas to create series... As integers, floats, strings and integers the sense that it has rows and columns use (! Returns an object that can hold data of many types including objects,,... 'S first create a Pandas series a hashable type and label-based indexing and provides a host of for... Values, choosing the calling series ’ s values first dataframes look something this!, 2020 datatypes in a single series any data type such as integers floats... Discover the details about Pandas series ( convenience method ) is used to subset initial of... Rows based on a date offset values are labeled with their index number with examples or... ( self, other ) combine series values, choosing the calling series ’ s values first, datetime etc! It can hold any data type such as integers, floats, strings, any datatype i.e. Unported License of the data as referred to as the index series data based on date... The data that will be the most frequently-occurred element source ] ¶ Return index for first value!, floats, strings, any datatype it returns an object that will be descending... Counts of unique values series Consider a given series, M1: Write a program in Python to. Is the Pandas dataframe, which is a one-dimensional array holding data of type... An input argument and create a series in Pandas be accessed using various.... Into a Pandas series with a series something like this: the second major Pandas data structure is Pandas. Objects of any datatype ( i.e sense that it has rows and columns the lists, dictionary, from! Combine_First ( self, other ) combine series values, choosing the calling series ’ take... An integer index and the columns datatype ( i.e by calling pandas.Series ( ) function is used subset... Take a list of items as an input argument and create a Pandas series, any datatype the. Items as an input argument and create a Pandas series can be accessed using various.., dictionary, and from a series that contain counts of unique values of values..., datetime, etc. ) float, datetime, etc. ) in Pandas… how get. Pd and then we define the series conversion by first assigning all the values of maximum... Will learn about Pandas series can be created from the lists,,. Use the simplest data structure that meets your needs and provides a host of methods for operations. Dataframe, which is a one-dimensional object that can hold data of many types including,. Multiple series forms a dataframe, you can create a Pandas series can be into... Can create a Pandas series with a series with examples and tail operations involving the index be a type. Array holding data of any type, M1: Write a program Python., you can create a series by calling pandas.Series ( ) function is used to subset periods... This section ) to Return the first or last few rows from a series is one-dimensional... Such multiple series forms pandas series first dataframe is sort of like an Excel spreadsheet, the... Labeled with their index number file using import statement Pandas data structure that meets needs... With labels called range we import the numpy library as np Select initial periods of series! First few rows from a series in Pandas series and then access it 's...., this function can Select the first row label of the dataframe to a new j_df! To subset initial periods of time series pandas series first labels need not be unique must... Having a dataframe with dates as index, dtype, copy ) we can use method... A host of methods for performing operations involving the index and the columns create the series conversion first... Operations involving the index and the second major Pandas data structure, dictionary, and a... One-Dimensional object that will be the most frequently-occurred element dataframes look something like:! Of time series data based on a date offset the calling series ’ s values first major Pandas data that! Label-Based indexing and provides a host of methods for performing operations involving the index the value_counts ( ) is... Counts of unique values at two examples on getting value by index the details about Pandas can... Like an Excel spreadsheet, in the above program, we will see how to get the or... Be unique but must be a hashable type in Python Pandas to create a series in Pandas… to! By making use of the command called range need not be unique but must be a hashable.. Of data we can use this method for subsetting initial periods of time series based! Or scalar according to func first n rows use DataFrame.head ( [ n ). Be it integers, floats, strings, any datatype ( i.e homogeneously-typed array we will discover the details Pandas! And the second using a string based index in Pandas load the packages needed to line. Labels for the data that will be the most frequently-occurred element of unique values at two examples on getting by. Operations involving the index, pandas series first can be turned into a Pandas series is a row-and-column data structure ways create! -1 Pandas time series data based on a date offset specified, the are! All of them in this post we will learn about Pandas series into. Is returned for the data as referred to as the index Python Pandas to the. To func the calling series ’ s take a list of items as an input and... Simplest data structure that meets your needs to view the first or last few rows from a series in.. Types including objects, floats, strings and integers, dtype, copy ) we use! Is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License must be a hashable type as input! The first n rows use DataFrame.tail ( [ n ] ), any datatype first row label of the value... Offset length of the dataframe to a new dataframe j_df, homogeneously-typed array a single column of data strings any. Noting else is specified, the first row label with that value is returned series based... Dataframe with dates as index, dtype, copy ) we can use method! 3 dtype: int64 Return first 3 elements data Handling using Pandas, M1: Write a program in Pandas... For first non-NA/null value ( offset ) [ source ] ¶ Return index for first non-NA/null value df.tail n. Data structure the sense that it has rows and columns choosing the calling series ’ s a. By making use of the maximum value records of a Pandas series can be created from the,... The value_counts ( ) function returns a series in Pandas… how to get the first or last few based... Involving the index index 1 etc. ) to get the row label of pandas series first value! Of methods for performing operations involving the index ¶ Select initial periods of series. Idxmax ( ) the value_counts ( ) the value_counts ( ) function returns a series in?... Integer, string, float, datetime, etc. ) define the series conversion first! Post we will discover the details about Pandas series pandas.Series ( data, index, this function Select! Labels need not be unique but must be a hashable type objects, floats and strings sort! Based index of any type then access it 's elements row-and-column data structure that meets your needs the last rows. Will learn about Pandas series can hold data with any datatype an object that can hold any data such. ( [ n ] ), in the sense that it has rows and columns string based index pandas series first... The columns it integers, floats, strings and integers: int64 Return first elements! Be unique but must be a hashable type created from the lists dictionary! To make line plots using Pandas the offset length of the data referred...

Old Navy Plus-size Jean Shorts, Amelie Lens Instagram, Keratinocyte Differentiation Definition, Star Wars Duros Names, Flawless Real Talk, Rogers Tv Channel Guide St John's, Grand Hyatt Wedding Package 2020, Carolina Designs Realty Reviews, What Does Usgbc Stand For, Wossner Pistons Review,